
1

MECH375

Dr. Y K Lee

Fundamentals of Vibration

MECH375G



2

MECH375

Dr. Y K Lee

Outline
• Why vibration is important?

• Definition; mass, spring (or stiffness)  
dashpot  

• Newton’s laws of motion, 2nd order ODE

• Alternative way to find eqn of motion:
energy methods

• Three types of vibration for SDOF sys.

• Examples
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• Vibrations can lead to excessive deflections 
and failure on the machines and structures

• To reduce vibration through proper design of 
machines and their mountings

• To utilize profitably in several consumer and 
industrial applications

• To improve the efficiency of certain 
machining, casting, forging & welding 
processes

• To stimulate earthquakes for geological 
research and conduct studies in design of 
nuclear reactors

Why to study vibration
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Why to study vibration
• Imbalance in the gas or diesel engines
• Blade and disk vibrations in turbines

• Noise and vibration of the hard-disks in
your computers

• Vibration testing for electronic 
packaging to conform Internatioal
standard for quality control (QC)

• Safety eng.: machine vibration causes  
parts loose from the body

• Cooling fan in the power supply/computers
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Stiffness

• From strength of materials (Solid Mech) recall:
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Free-body diagram and equations of motion

• Newton’s Law:
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2nd Order Ordinary Differential Equation 
with Constant Coefficients
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Periodic Motion

nω
π2

Amplitude, A

Time, t

period

Max velocity

Initial displacement

Phase = φ

x(t) )sin()( φω += tAtx n
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Frequency

ωn is in rad/s  is the natural frequency

fn =
ωn rad/s

2π rad/cycle
=

ωn cycles
2π s

=
ωn

2π
Hz

T =
2π
ωn

 s   is the period

We often speak of frequency in Hertz, but we 
need rad/s in the arguments of the trigonometric 
functions (sin and cos function).
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Amplitude & Phase from the initial 
conditions

  

x0 = Asin(ωn 0 + φ) = Asinφ
v0 = ωn Acos(ωn 0 + φ) = ωn Acosφ
Solving yields

A = 1
ωn

ωn
2 x0

2 + v0
2  

Amplitude
1 2 4 4 4 3 4 4 4 

,   φ = tan−1 ωn x0

v0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Phase
1 2 4 4 3 4 4 
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Phase Relationship between x, v, a

t

A

–A

O

vnA

–vnA

O

vn
2A

–v2
nA

O

t

t

Displacement
x (t) = A sin(vnt + f)

Velocity
x (t) = vnA cos(vnt + f)

Acceleration
x (t) = –vn

2A sin(vnt + f)
• •

•

)cos( φω += tAx n

)sin( φωω +−= tAx nn&

)cos(2 φωω +−= tAx nn&&

Acceleration

Velocity

Displacement
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Example 1verify that equation which satisfies the 
initial conditions

x(t) = Asin(ωt + φ) ⇒ x(0) = Asin(φ)

                                           = x0
2 + v0

ωn

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2

• x0

x0
2 + v0

ωn

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2

x0

φ

A = x0
2 +

v0

ωn
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⎝ 
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⎠ 
⎟ 

2

v0

ωn
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Example 2 For m= 300 kg and ωn =10 rad/s
compute the stiffness:

ωn =
k
m

⇒ k = mωn
2

                        = (300)102  kg/s2

                         = 3 ×104  N/m
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Other forms of the solution:

x(t) = Asin(ωnt + φ)
x(t) = A1 sinωnt + A2 cosωnt
x(t) = a1e

jωnt + a2e
− jωnt

Phasor: representation of a complex number in terms of a 
complex exponential
Ref: 1) Sec 1.10.2, 1.10.3

2) http://mathworld.wolfram.com/Phasor.html

( ) θθθ iAeiAX =+= sincos
r
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Some useful quantities

A = peak value

x = lim
T →∞

1
T

x(t)dt =  average value 
0

T

∫

x 2 = lim
T→∞

1
T

x 2 (t)dt
0

T

∫  =  mean - square value

xrms = x 2  =  root mean square value
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Peak Values
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Example 3 Hardware store spring, bolt: m= 49.2x10-3

kg,k=857.8 N/m and x0 =10 mm.  Compute ωn and max 
amplitude of vibration. 

ωn = k
m

= 857.8 N/m
49.2 × 10-3  kg

= 132 rad/s

fn = ω n

2π
= 21 Hz

T = 2π
ωn

= 1
fn

= 1
21cyles

sec
0.0476 s

x(t)max = A = 1
ωn

ωn
2 x0

2 + v0
2 = x0 =10 mm
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Compute the solution and max velocity and 
acceleration

v(t)max = ω nA = 1320 mm/s = 1.32 m/s

a( t)max = ω
n

2 A = 174.24 × 103  mm/s2

                      =174.24 m/s2 ≈17.8g!

φ = tan −1 ωn x0

0
⎛ 
⎝ 

⎞ 
⎠ =

π
2

 rad

x(t) =10sin(132t + π / 2) =10 cos(132t) mm
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A note on arctangents

• Note that using the arctangent from a 
machine requires some attention

• The argument atan(-/+) is in a different 
quadrant then atan(+/-), and usual machine 
calculations will return an arctangent in 
between -π/2 and +π/2 reading only the 
atan(-) for both of the above two cases. 

• In Matlab:  atan(z) and atan2(y,x)
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Derivation of the solution
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Viscous Damping: 
Damping force is proportional to the velocity 
of the vibrating body in a fluid medium such 
as air, water, gas, and oil. 

Coulomb or Dry Friction Damping: 
Damping force is constant in magnitude but 
opposite in direction to that of the motion of 
the vibrating body between dry surfaces

Material or Solid or Hysteretic Damping:
Energy is absorbed or dissipated by material 
during deformation due to friction between 
internal planes

Damping Elements
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Hysteresis loop for elastic materials

Strain
(displacement)

Stress (force)
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Shear Stress (τ ) developed in the fluid layer at a 
distance y from the fixed plate is:

where du/dy =  v/h is the velocity gradient.
•Shear or Resisting Force (F) developed at the bottom 
surface of the moving plate is:

where A is the surface area of the moving plate.

( )26.1
dy
duμτ =

( )27.1cv
h
AvAF === μτ

is the damping constant 
h
Ac μ

=

Viscous Damping
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and

is called the damping constant. 
If a damper is nonlinear, a linearization process 

is used about the operating velocity (v*) and the 
equivalent damping constant is:

( )28.1
h
Ac μ

=

( )29.1
*vdv

dFc =

Viscous Damping
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Linear Viscous Damping
• A mathematical 

form
• Called a dashpot or 

viscous damper
• Somewhat like a 

shock absorber
• The constant c has 

units: Ns/m or kg/s
)(txcfc &=
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Spring-mass-damper systems

• From Newton’s law:
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Derivation of the solution
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Solution of SDOF M-C-K System
(dates to 1743 by Euler)
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Let  x(t) = aeλt  &  subsitute into eq. of motion

        λ2aeλt + 2ζωnλaeλt + ωn
2aeλt = 0

which is now an algebraic equation in λ :

         λ1,2 = −ζωn ± ωn ζ 2 −1
from the roots of a quadratic equation

Here the discriminant ζ 2 −1, determines
the nature of the roots λ

Solution of SDOF M-C-K System
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Three possibilities:

00201

21

  ,  
:conditions initial  theUsing

)(       

221=

damped critically called
repeated & equal are roots1 )1
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tt
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===⇒
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Sec. 2.6 
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Critical damping continued

• No oscillation occurs
• Useful in door mechanisms, analog gauges
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http://www.amazon.com/s?ie=UTF8&rh=n%3A3407141&page=1
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The overdamped response
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3)  ζ < 1, called underdamped motion - most common
Two complex roots as conjugate pairs
write roots in complex form as :
        λ1,2 = −ζωn ± ωn j 1− ζ2

                           where     j = −1

Under-damping
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Underdamping

x(t) = e− ζωnt (a1e
jωnt 1−ζ2

+ a2e
− jωnt 1−ζ2

)

      = Ae−ζωnt sin(ωdt + φ)

ωd = ωn 1− ζ2 ,  damped natural frequency

A =
1

ωd

(v0 + ζωnx0 )
2 + (x0ωd )2

φ = tan−1 x0ωd

v0 + ζωnx0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

http://acoustics.me.uic.edu/Simulation/SDOF%20Damped.htm
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Underdamped-oscillation
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• Gives an oscillating 
response with 
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vibrate with and 
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• See textbook for details 
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Example 4 consider the spring in Ex.3, if c = 0.11 kg/s, 

determine the damping ratio of the spring-bolt system.

m = 49.2 × 10−3  kg,  k = 857.8 N/m

ccr = 2 km = 2 49.2 ×10−3 ×857.8
                              = 12.993 kg/s

ζ =
c

ccr

=
0.11 kg/s

12.993 kg/s
= 0.0085 ⇒

             the motion is underdamped
             and the bolt will oscillate
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Example 5
The human leg has a measured natural frequency of around 
20 Hz (Ref: Fig. 9.2) when in its rigid (knee locked) position, in 
the longitudinal direction (i.e., along the length of the bone) 
with a damping ratio of ζ = 0.224.

Calculate the response of the tip if the leg bone to 
v0= 0.6 m/s and x0=0 

This correspond to the vibration induced while landing on your 
feet, with your knees locked from a height of 18 mm) and plot 
the response.  What is the maximum acceleration
experienced by the leg assuming no damping?
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Solution:
V0=0.6, X0=0, ζ = 0.224

ωn = 20
1

cycles
s

2π rad
cycles

= 125.66 rad/s

ωd =125.66 1− .224( )2 = 122.467  rad/s

A =
0.6 + 0.224( ) 125.66( ) 0( )( )2 + 0( ) 122.467( )2

122.467
= 0.005 m

φ = tan-1 0( ) ωd( )
v0 +ζω n 0( )

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ = 0

                             ⇒ x t( )= 0.005e−28.148t sin 122.467t( )

2
0

2
00 )()(1

dn
d

xxvA ωζω
ω

++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= −

00

01tan
xv

x

n

d

ζω
ω

φ
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Use undamped formula to get max acceleration:
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maximum acceleration = 75.396 m/s2

9.81 m/s2 g = 7.68g' s
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Plot of the response:
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Example 6 Compute the form of the response of an 
underdamped system using the Cartesian form 
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MODELING AND ENERGY 
METHODS

An alternative way to determine the 
equation of motion and an alternative way 

to calculate the natural frequency
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Modelling

• Newton’s Laws

θ&&
&&
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xmF

i

xi

=

=

∑
∑



45

MECH375

Dr. Y K Lee

Energy Methods

0)(or        

constant

2
1= done work 

Energy Kinetic
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Alternate method of getting the eq. of motion
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Rayleigh’s Method

• T1+ U1= T2+ U2
• Let t1 be the time at which m moves through 

its static equilibrium position, then
• U1=0, reference point
• Let t2 be the time at which m undergoes its

max displacement (v=0 so T2=0), U2 is max
(T1 must be max ), 

• Thus  Umax=Tmax

Ref: Section 2.5 
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Example 7 

r

x(t) m,J

k

θ

Compute the natural frequency
of this simplified model of a
car hitting a bump.  Assume it
is a conservative system.

2
nalTranslatio

2
rotational 2

1  and   
2
1 xmTJT && == θ

x(t) J

k

J = mass moment of inertia (rotational mass, rotational inertia, 
angular mass) = m r2



48

MECH375

Dr. Y K Lee

Solution continued
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Example 8: Pendulum 

θ

L

g

O 

m 
J0=mL 2
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Now write down the energy
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Example 9 The effect of including the mass of the 
spring  on the value of the frequency.

x(t)

ms, k

y y +dy

l

m 

Ex. 2.8 

dy
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Ex. 2.8 
Effect of the spring mass = add 1/3 of its mass to the 
main mass

Umax=Tmax

Solution to Ex 9
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What about gravity?

m

m

+x(t)

0

k

mg 

kΔ

+x(t)

Δ

2

2

2
1

)(
2
1

xmT

mgxU

xkU

grav

spring

&=

−=

+Δ=

mg − kΔ = 0, from FBD,
 and static equilibrium
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0

0)()(
)(                    

0)(
2
1

2
1

0)( use Now

equ. static from 0

22

=+⇒

=−Δ++⇒
+Δ+−⇒

=⎥⎦
⎤

⎢⎣
⎡ +Δ+−⇒

=+

kxxm

mgkxkxxmx
xxkxmgxxm

xkmgxxm
dt
d

UT
dt
d

&&

43421
&&&&

&&&&&

&
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Do it again using Newton’s law

0

)()(
:mass of FBD From

mequilibriu
static from 0

=+⇒

Δ−+−=+Δ−=

kxxm

kmgkxxkmgxm

&&

43421
&&

mg
+x(t)

k(Δ+x)

m 
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Example  Compound Pendulum 

mg

F

F

mgrsinθ(t)

mgrcosθ(t)

x

yO

G

O

G

θ(t)

r

C

q0G is the center of mass

r is the distance OG

C is the center of percussion
Defined as the distance

where a simple pendulum of the same mass
would have the same period (T) as this pendulum

The radius of gyration k0 is the radius of a ring that would
have the same angular inertia

q0 =
J

mr

k0 = q0r
Ex. 2.6

q0=Length of equivalent 
simple pendulum

O

C

G
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0

0

                                

0)()(sin

0)(sin)(          

0)(sin)(         

)(sin)(

q
g

J
mgr

t
J

mgrt

t
J

mgrt

tmgrtJ

tmgrtJM

n ==⇒

=+⇒≈

=+⇒

=+⇒

−==∑

ω

θθθθ

θθ

θθ

θθ

&&

&&

&&

&&

center of percussion = the point on a rigid body, suspended so as to be able to 
move freely about a fixed axis, at which the body may be struck without changing 
the position of the axis
No matter whether the body is pivoted from O or C, its natural frequency is the 
same. The point C is called the center of percussion.
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The method used by manufacturers and governing 
associations to determine the moment-of-inertia of a baseball 
or softball bat is to measure the period of oscillation when the 
bat is allowed to swing as a pendulum from a pivot point 6-
inches from the knob end of the bat, and then calculate the 
moment-of-inertia

ASTM F 1881-04: Standard Test Method for Measuring Baseball Bat 
Performance Factor, and ASTM F 1890-04: Standard Test Method for 
Measuring Softball Performance Factor, Annual Book of ASTM Standards, Vol. 
15.07 (ASTM International, West Conshohocken, PA, 2004). ASTM F 2398: 
Test Method for Measuring Moment of Inertia and Center of Percussion of a 
Baseball or Softball Bat

Center of Percussion in ASTM Standard
for quality control

ASTM= American Society for Testing and Materials International

www.astm.org 
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More on springs and stiffness

• Longitudinal motion
• A is the cross sectional area 

(m2)
• E is the elastic modulus 

(Pa=N/m2)
• l is the length (m)
• k is the stiffness (N/m)

x(t)

m

 
k =

EA
l

l
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Torsional Stiffness

• Jp is the polar moment of 
inertia of the rod

• J is the mass moment of 
inertia of the disk

• G is the shear modulus, l
is the length

Jp

J θ(t)

0
 
k =

GJp

l

Sec. 2.3 

Polar moment of inertia (Jp) is a measure of an object's ability to resist torsion (solid 
mechics). The polar moment of inertia must not be confused with the moment of 
inertia (J), which characterizes an object's angular acceleration due to a torque 
(dynamics).

∫= dArJ p
2 ∫= dmrJ 2
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Example  compute the frequency of a shaft/mass 
system {J = 0.5 kg  m2}

rad/s 2.2                   
)mm)(0.5kg 2(

]32/m)105.0()[N/m108(

cm 0.5 ofdiameter  shaft, steel m 2 aFor 
32

    ,                  

0)()(

0)()(

2

42210

4

=

⋅
××

==

⇒

===⇒

=+⇒

=+⇒=

−

∑

πω

πω

θθ

θθθ

J
GJ

dJ
J

GJ
J
k

t
J
kt

tktJJM

p
n

p
p

n

l

l

&&

&&&&
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Helical Spring

2R

x

d = diameter of wire
2R= diameter of turns
n = number of turns
x= end deflection

G= shear modulus of spring 
material

k =
Gd4

64nR3
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Transverse beam stiffness 

                                 f

 m

 x

• Strength of materials and 
experiments yield:

 

k =
3EI
l3

ωn =
3EI
ml3
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Samples of Vibrating Systems

• Deflection of continuum (beams, plates, 
bars, etc) such as airplane wings, truck 
chassis, disc drives, circuit boards…

• Shaft rotation
• Rolling ships
• See text for more examples. 
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Example : effect of fuel on 
frequency of an airplane wing

• Model wing as transverse 
beam

• Model fuel as tip mass
• Ignore the mass of the wing 

and see how the frequency 
of the system changes as 
the fuel is used up

x(t) 

l 

E, I         m
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Mass of pod 10 kg empty 1000 kg full
I = 5.2x10-5 m4, E =6.9x109 N/m, l = 2 m

• Hence the 
natural 
frequency 
changes by an 
order of 
magnitude
while it empties 
out fuel.

 

ω full = 3EI
ml3 = 3(6.9 ×109 )(5.2 ×10−5 )

1000 ⋅ 23

                    = 11.6 rad/s = 1.8 Hz

ωempty =
3EI
ml3 =

3(6.9 ×109 )(5.2 ×10−5 )
10 ⋅23

                     = 115 rad/s =18.5 Hz

Pod= a streamlined external housing that enclose engines or fuel
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Static Deflection

k
mg

m

s ===Δ

=Δ

δδ

δ

it.  to mass a attachingby gravity        
 of force under the compressed       

orstretched isspringdistance,

Many symbols in use including xs and x0
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Combining Springs

• Equivalent Spring

series :  kAC = 1
1

k1
+ 1

k2

parallel :   kab = k1 + k2
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Use these to design from 
available parts

• Discrete springs available in standard 
values

• Dynamic requirements require specific 
frequencies

• Mass is often fixed or + small amount
• Use spring combinations to adjust wn

• Check static deflection
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Example  Design of a spring mass system 
using available springs: series vs parallel 

• Let m = 10 kg
• Compare a series and parallel 

combination
• a) k1 =1000 N/m, k2 = 3000 N/m, 

k3 = k4 =0
• b) k3 =1000 N/m, k4 = 3000 N/m, 

k1 = k2 =0

k1
k2

k3

k4

m 
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Case a) parallel connection :
k3 = k4 = 0,keq = k1 + k2 =1000 + 3000 = 4000 N/m

                      ⇒ ω parallel =
keg

m
=

4000
10

= 20 rad/s

Case b) series connection :

k1 = k2 = 0, keq = 1
(1 k3 ) + (1 k4 )

= 3000
3 +1

= 750 N/m

                      ⇒ ω series =
keg

m
= 750

10
= 8.66 rad/s

Same physical components, very different frequency
Allows some design flexibility in using off-the-shelf components
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Free Vibration with Coulomb Damping

Coulomb’s law of dry friction states that, when 
two bodies are in contact, the force required to 
produce sliding is proportional to the normal 
force acting in the plane of contact. Thus, the 
friction force F is given by: 

)106.2(mgWNF μμμ ===
where N is normal force,

μ is the coefficient of sliding or kinetic friction
μ is usu 0.1 for lubricated metal, 0.3 for nonlubricated
metal on metal, 1.0 for rubber on metal 

Coulomb damping is sometimes called constant 
damping Sec 2.7
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• Equation of Motion:
Consider a single degree of freedom system with 
dry friction as shown in Fig.(a) below.

Since friction force varies with the direction of 
velocity, we need to consider two cases as 
indicated in Fig.(b) and (c).

Free Vibration with Coulomb Damping

μN μN
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)107.2(or     NkxxmNkxxm μμ −=+−−= &&&&

Case 1. When x is positive and dx/dt is positive or 
when x is negative and dx/dt is positive (i.e., for 
the half cycle during which the mass moves from 
left to right) the equation of motion can be 
obtained using Newton’s second law (Fig. b):

Hence,
)108.2(     sincos)( 21 k

NtAtAtx nn
μωω −+=

where ωn = √k/m is the frequency of vibration
A1 & A2 are constants

Free Vibration with Coulomb Damping
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Case 2. When x is positive and dx/dt is negative or 
when x is negative and dx/dt is negative (i.e., for 
the half cycle during which the mass moves from 
right to left) the equation of motion can be derived 
from Fig. (c):

)109.2( or         NkxxmxmNkx μμ =+=+− &&&&

The solution of the equation is given by:

)110.2(sincos)( 43 k
NtAtAtx nn

μωω ++=

where A3 & A4 are constants

Free Vibration with Coulomb Damping
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Fig. 2.34 Motion of the mass with Coulomb damping

Free Vibration with Coulomb Damping
kNtkNxtx n /cos)/()( 0 μωμ +−=

kNtkNxtx n /cos)/3()( 0 μωμ −−=

tkNxtx nn ωωμ sin)/()( 0 −−=&

tkNxtx nn ωμω sin)/3()( 0 −−=&
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Eqs.(2.107) & (2.109) can be expressed as a 
single equation using N = mg:

• Solution:

)111.2(0)sgn( =++ kxxmgxm &&& μ

where sgn(y) is called the signum function, whose 
value is defined as 1 for y > 0, -1 for y< 0, and 0 
for y = 0.

Assuming initial conditions as

)112.2(0)0(
)0( 0

==
==

tx
xtx

&

Free Vibration with Coulomb Damping
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The solution is valid for half the cycle only, i.e., for 
0 ≤ t ≤ π/ωn. Hence, the solution becomes the 
initial conditions for the next half cycle. The 
procedure continued until the motion stops, i.e., 
when xn ≤ μN/k. Thus the number of half cycles 
(r) that elapse before the motion ceases is:

)115.2(2

2

0

0

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧ −
≥

≤−

k
N
k
Nx

r

k
N

k
Nrx

μ

μ

μμ

That is, 

Free Vibration with Coulomb Damping

0,/ 403 =−= AkNxA μ
kNtkNxtx n /cos)/()( 0 μωμ +−=

)/2(/cos)/()/( 00 kNxkNkNxtx n μμπμωπ −−=+−==

kNtkNxtx n /cos)/3()( 0 μωμ −−=
π/ωn ≤ t ≤ 2π/ωn

tkNxtx nn ωωμ sin)/()( 0 −−=&

0,/3 201 =+−=− AkNxA μ
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Note the following characteristics of a system with 
Coulomb damping:
1. The equation of motion is nonlinear with Coulomb 

damping, while it is linear with viscous damping
2. The natural frequency of the system is unaltered with the 

addition of Coulomb damping, while it is reduced with the 
addition of viscous damping.

3. The motion is periodic with Coulomb damping, while it 
can be nonperiodic in a viscously damped (overdamped) 
system.

4. The system comes to rest after some time with Coulomb 
damping, whereas the motion theoretically continues 
forever (perhaps with an infinitesimally small amplitude) 
with viscous damping.

Free Vibration with Coulomb Damping
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Note the following characteristics of a system with 
Coulomb damping:
5. The amplitude reduces linearly with Coulomb damping, 

whereas it reduces exponentially with viscous damping.
6. In each successive cycle, the amplitude of motion is 

reduced by the amount 4μN/k, so the amplitudes at the 
end of any two consecutive cycles are related:

)116.2(4
1 k

NXX mm
μ

−= −

As amplitude is reduced by an amount 4μN/k in one 
cycle, the slope of the enveloping straight lines (shown 
dotted) in Fig 2.34.

Free Vibration with Coulomb Damping
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)118.2(

)117.2(

0

0

TkJ

TkJ

t

t

=+

−=+

θθ

θθ
&&

&&

)119.2(
0J

kt
n =ω

• Torsional Systems with Coulomb Damping:
The equation governing the angular oscillations of 
the system is

and

The frequency of vibration is given by

Free Vibration with Coulomb Damping
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and the amplitude of motion at the end of the r-th 
half cycle (θr) is given by:

The motion ceases when

)121.2(2

0

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧ −
≥

t

t

k
T

k
T

r
θ

)120.2(2
0

t
r k

Tr−= θθ

Free Vibration with Coulomb Damping
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Consider the spring-viscous damper arrangement 
shown in the figure below. The force needed to 
cause a displacement:

For a harmonic motion 
of frequency ω and 
amplitude X,

Free Vibration with Hysteretic Damping

)122.2(xckxF &+=

)123.2(  sin)( tXtx ω=

)124.2(        

)sin(        

cossin)(

22

22

xXckx

tXXckx

tcXtkXtF

−±=

−±=

+=∴

ω

ωω

ωωω

22 xXc −ωXcω

Xcω−)(tF)(tx
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( )( )
)125.2(        

coscossin
2

/2

0

cX

dttXtcXtkXFdxW

πω

ωωωωω
ωπ

=

+==Δ ∫∫

When F versus x is plotted, Eq.(2.124) represents a 
closed loop, as shown in Fig(b). The area of the loop 
denotes the energy dissipated by the damper in a cycle of 
motion and is given by:

Hence, the damping 
coefficient:

)126.2(
ω
hc =

where h is called the hysteresis
damping constant.

Fig.2.36 Hysteresis loop

Free Vibration with Hysteretic Damping

Experiments shows that the energy loss due to 
internal friction is independent of operating ω
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Complex Stiffness. 
For general harmonic motion,              , the force is given 
by 

)127.2(2hXW π=Δ

)128.2()( xcikiXeckXeF titi ωω ωω +=+=

Eqs.(2.125) and (2.126) gives

Thus, the force-displacement relation:

)130.2()1(1

)129.2()(

βik
k
hikihk

xihkF

+=⎟
⎠
⎞

⎜
⎝
⎛ +=+

+=

where

Free Vibration with Hysteretic Damping

tiXex ω=
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The hysteresis logarithmic decrement can be 
defined as

)131.2(2XkW βπ=Δ

)135.2()1ln(ln
1

πβπβδ ≈+≈⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

+j

j

X
X

Response of the system. 
The energy loss per cycle can be expressed as

Corresponding frequency

)136.2(
m
k

=ω

Response of a hysteretically damped system

Free Vibration with Hysteretic Damping

jX
1+jX

5.0+jX
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And thus the equivalent damping constant is

)137.2(
22

2

k
h

k
h

eq

eq

==

=≈≈

βζ

ππβπζδ

The equivalent viscous damping ratio

)138.2(   
2

2
ωω

βββζ hkmkmkcc eqceq ===⋅=⋅=

Free Vibration with Hysteretic Damping
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Example 2.16 Response of a Hysteretically
Damped Bridge Structure

A bridge structure is modeled as a single degree of 
freedom system with an equivalent mass of 5 X 105 kg and 
an equivalent stiffness of 25 X106 N/m. During a free 
vibration test, the ratio of successive amplitudes was found 
to be 1.04. Estimate the structural damping constant (β) 
and the approximate free vibration response of the bridge. 
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Example 2.16 Solution
Using the ratio of successive amplitudes, 
Eq.(2.135) yields the hysteresis logarithmic 
decrement as

0127.004.004.11

)1ln()04.1ln(ln
1

===+

+==⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

+

π
βπβ

πβδ

or

X
X

j

j

The equivalent viscous damping coefficient is

(E.1)km

m
k
kkceq ββ

ω
β

===



91

MECH375

Dr. Y K Lee

Using the known values of the equivalent stiffness 
and equivalent mass,

s/m-N 109013.44)105)(1025()0127.0( 356 ×=××=eqc

Since ceq < cc, the bridge is underdamped. 
Hence, its free vibration response is

0063.0
100678.7071

109013.40

1sin
1

1cos)(

3

3

2

2
002

0

=
×

×
==

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−

+
+−= −

c

eq

n

n

n
n

t

c
c

txxtxetx n

ζ

ωζ
ωζ

ζωωζζω &

where

Example 2.16 Solution
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The energy dissipated in a complete cycle is: 

)93.2( velocity force 
2

2 ⎟
⎠
⎞

⎜
⎝
⎛−=−==×=

dt
dxccvFv

dt
dW

2.6.4 Energy dissipated in Viscous Damping: 

In a viscously damped system, the rate of change 
of energy with time is given by: 

)94.2(

)(cos

2

2

0

22
2

)/2(

0

Xc

tdtcXdt
dt
dxcW

d

dddt

d

ωπ

ωωω
πωπ

=

⋅=⎟
⎠
⎞

⎜
⎝
⎛=Δ ∫∫=
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The energy dissipated in a complete cycle will be

Thus, Eq.(2.95) becomes

Consider the system shown in the figure below. 
The total force resisting the motion is:

)95.2(xckxcvkxF &−−=−−=

)97.2(cossin tXctkXF ddd ωωω −−=

)96.2(       sin)( tXtx dω=
If we assume simple harmonic motion:

)98.2(    )(cos        

)(cossin       

2/2

0

22

/2

0

2

/2

0

XctdtXc

tdttkX

FvdtW

dt ddd

t dddd

t

d

d

d

ωπωωω

ωωωω
ωπ

ωπ

ωπ

=⋅+

⋅⋅=

=Δ

∫
∫
∫

=

=

=

Energy dissipation
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where W is either the max potential energy or the max 
kinetic energy.

Computing the fraction of the total energy of the 
vibrating system that is dissipated in each cycle of 
motion,   Specific Damping Capacity

)99.2(constant42
2

22

2
1 22

2

=≈=⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

Δ πζδ
ω
π

ω

ωπ
m
c

Xm

Xc
W
W

d

d

d

The loss coefficient, defined as the ratio of the 
energy dissipated per radian and the total strain 
energy:

)100.2(
2

)2/(tcoefficien loss
W
W

W
W

π
π Δ

=
Δ

=

Energy dissipation and Loss Coefficient
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