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Outline

 Why vibration Is important?

» Definition; mass, spring (or stiffness)
dashpot

 Newton’s laws of motion, 2"d order ODE

* Three types of vibration for SDOF sys.

 Alternative way to find egn of motion:
energy methods

 Examples
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Why to study vibration

Vibrations can lead to excessive deflections
and failure on the machines and structures

To reduce vibration through proper design of
machines and their mountings

To utilize profitably in several consumer and
iIndustrial applications

To improve the efficiency of certain
machining, casting, forging & welding
processes

To stimulate earthquakes for geological

research and conduct studies in design of
nuclear reactors

Dr.Y K Lee
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Why to study vibration

* Imbalance in the gas or diesel engines

« Blade and disk vibrations in turbines

* Noise and vibration of the hard-disks In
your computers

« Cooling fan in the power supply/computers

 Vibration testing for electronic
packaging to conform Internatioal
standard for quality control (QC)

« Safety eng.: machine vibration causes
parts loose from the body

4 Dr. Y K Lee
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Stiffness

* From strength of materials (Solid Mech) recall:

ETE

Force, f

103N

0 20 mm X
Displacement

5 Dr.Y K Lee
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Free-body diagram and equations of motion

k — yT_,

surface

y - X(t) .
m
:OI_ Friction-free fc —e—
C:

Ty~

« Newton’s Law:

mi(t) = —kx(¢)

mi(t)+kx(t) =0

— | —af—

x(0) = x,, x(0) = vy

Dr.Y K Lee
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2nd Order Ordinary Differential Equation
with Constant Coefficients

Divide by m : X(t) + @>x(¢) =0

@, :\/E . natural frequency in rad/s
m
x(t) = Asin(w, t + @)

7 Dr.Y K Lee
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Periodic Motion

(1) X(t) = ASin(&)nt + ¢)

Max velocity
Initial displace en///\ \/% Amplitude, A
A : >
Time, t
Phase = ¢
| 27T _)|
I -
a)l/l
period

8 Dr.Y K Lee
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Frequency

@, 1s in rad/s is the natural frequency
[= @, rad/s _ o, cycles _ Dy,
2 rrad/cycle 27S 27

T = 2z S 1s the period
()]

n

We often speak of frequency in Hertz, but we
need rad/s in the arguments of the trigonometric
functions (sin and cos function).

Dr.Y K Lee
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Amplitude & Phase from the initial
conditions

x, = Asin(w 0+ @) = ASIin ¢
v, =, Acos(w 0+ @) = @ ACoS @

Solving yields
1 4| @ x
A=—1&’x:+Vv., ¢=tan"| =2
a)n VO
Am[;ﬁtude Phase

10 Dr.Y K Lee
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Phase Relationship between x, v, a

A
Displacement

x=Acos(w, t+¢) °

-A

Velocity VA
X=-w,ASIN(® t+ @) ©

_VnA

Acceleration )
vitA

¥=-w’Acos(w t+¢@) o

_V2nA

11
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Exam ple 1 verify that equation which satisfies the
initial conditions

x(t) = Asin(at + ¢) = x(0) = Asin(gp)

12 Dr.Y K Lee
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Example 2 For m= 300 kg and w, =10 rad/s

compute the stiffness:

—
k 2
W =4— =>k=mw:
m

= (300)10° kg/s°
=3x10* N/m

13 Dr.Y K Lee
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Other forms of the solution:

x(t)=Asin(w t + @)
x(t)=ASInwt+ A CoSw ¢

—jopt

x(t)=ae” +ae

Phasor: representation of a complex number in terms of a
complex exponential 3 _ A(

Ref: 1) Sec 1.10.2, 1.10.3

2) http://mathworld.wolfram.com/Phasor.html

cos@ +isind)= Ae”

14 Dr. Y K Lee
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Some useful quantities

A = peak value

X = ITirQ %fx(t)dt = average value

.1z
x° = 1lim ?sz(t)dt = mean -square value
0

T— o0

x =+/Xx° = root mean square value

rms

15 Dr.Y K Lee
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Peak Values

max or peak value of :
displacement: x_. = A4
velocity: x,_ . = @A
acceleration: ¥ . =w’4

max

Dr.Y K Lee
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Example 3 Hardware store spring, bolt: m= 49.2x10-3

kg,k=857.8 N/m and X, =10 mm. Compute o, and max

amplitude of vibration.

17

®, = ( 8578 Ném =132 rad/s
49.2 x 10™ kg

=21 Hz

T=2”= 1__ 1 0476

cyles
@, f’; 21 4 SeC

1
X(1) ey = =;n‘/a)ﬁx§ +/VOV'= x, =10 mm

Dr.Y K Lee
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Compute the solution and max velocity and
acceleration

V(t) e = @,A=1320 mm/s =1.32 m/s
() e = 0° A =174.24 x 10° mm/s’

=174.24 m/s® ~17.8¢

L o,x,

¢ =tan \ )——rad

x(2) =10sIn(132¢ + 7/ 2) =10 cos(132¢) mm

18 Dr.Y K Lee
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A note on arctangents

* Note that using the arctangent from a
machine requires some attention

 The argument atan(-/+) is in a different
quadrant then atan(+/-), and usual machine
calculations will return an arctangent in
between -n/2 and +n/2 reading only the
atan(-) for both of the above two cases.

* |In Matlab: atan(z) and atan2(y,x)

19 Dr.Y K Lee
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Derivation of the solution

Substitute x(¢) =ae™ into mi+kx=0=
mAae™ +kae™ =0 =

P+k=0=

A= +/__—+\/7] to j =

x(t) = a,e”™” and x(t) = a,e " =

x(t) = a e +a,e

Dr.Y K Lee
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Damping Elements

JViscous Damping:

Damping force is proportional to the velocity
of the vibrating body in a fluid medium such
as air, water, gas, and oll.

JCoulomb or Dry Friction Damping:
Damping force is constant in magnitude but
opposite in direction to that of the motion of
the vibrating body between dry surfaces

JdMaterial or Solid or Hysteretic Damping:
Energy is absorbed or dissipated by material
during deformation due to friction between
internal planes

Dr.Y K Lee
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Hysteresis loop for elastic materials

Stress (force)

4
Loading

Hysteresls
loop

Unloeding

y Strain

(displacement)

Area

(e)

22

!Lr::l(a')

hx 1 .;'1|.I-"|.."|. '; Iw
fRaomnNg- expended(ABD)
SHONNNNRY  zecovered(BCD)
Simaln ()

)
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Viscous Damping

dShear Stress (7) developed in the fluid layer at a
distance y from the fixed plate is:

T = ,u@ (1.26)

dy
where du/dy = v/h is the velocity gradient.
*Shear or Resisting Force (F) developed at the bottom
surface of the moving plate is:

Av

F=TA=/17=CV (1.27)
where A is the surface area of the moving plate.
c= # is the damping constant

h

Dr.Y K Lee
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Viscous Damping
and _ (1.28)

IS called the damping constant.

If a damper is nonlinear, a linearization process
is used about the operating velocity (v*) and the

equivalent damping constant is:

Surface aren of plete = A

|ﬁﬂ-%

_dF
dV v*

(1.29)

C

h

Y

Viscous
fhiid

{

{ot—F(damping force)

_I_

24
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Linear Viscous Damping

A mathematical
form

» Called a dashpot or
viscous damper

- « Somewhat like a
shock absorber

 The constant ¢ has
units: Ns/m or kg/s

25 Dr.Y K Lee
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Spring-mass-damper systems

* From Newton’'s law:

WL mii(t) = 1.~ f;
Ml ]’:" - = —cx(f) — kx(t)
mi(t)+cx(t) + kx(¢) =0

x(0) = xq, x(0) =,

Z

surface

26 Dr.Y K Lee
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Derivation of the solution

Substitute x(¢) =ae™ into mi+ci+kx=0=
mAtae™ +clae™ + kae” =0 =

ml +cl+k=0=

A, =—C0), + -1 =

x(t) = a,e™ and x(¢) = a,e™ =

x(t) = a,e™ +a,e™

27 Dr.Y K Lee
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Solution of SDOF M-C-K System
(dates to 1743 by Euler)

Divide equation of motion by m
X(t)+ 2w x(t) + w’x(t) =0

where o, :1/%1 and

“_ = damping ratio (dimensionless)

§ = ——=
2N km ¢,
c, =2+ km

Dr.Y K Lee
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Solution of SDOF M-C-K System

Let x(z) = ae” & subsitute into eg. of motion
Lae™ + 20w Aae™ + wiae™ =0

which is now an algebraic equation in A :
ho =G0, = o, -1

from the roots of a quadratic equation

Here the discriminant £ —1, determines
the nature of the roots A

29
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Three possiblilities:

1) { =1= roots are equal & repeated
called critically damped

(=1l=>c=c, =2Nkm =2mw,

~w,t

x(t)=a,e ™ +a,te
Using the initial conditions :

Cll zxo, Cl2 :VO +C()n.x0

Sec. 2.6

30
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Critical damping continued

* No oscillation occurs
« Useful in door mechanisms, analog gauges

x(t) =[x, + (v, + @,x, )t]e ™

0.8
0.6
04ff
02\

0.0 S S -
ool 0510 15 20 25 30 35

1)

ispiacvcciiiciie (i
Y4

Juswaoe|dsiq

Time, t

31 http://www.amazon.com/s?ie=UTF8&rh=n%3A3407141&page=1
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Overdamping

2) ¢ >1, called overdamping - two distinct real roots :

A, =—C0, iwnvgz -1

x(t) _ e—é’a)nt (ale—a)nt\/g“z—l 4 azewnt\/gz—l)

—v, + (- +¢° Do, x,
2w /&% -1
) Doy,
2 2m /7 -1

where a, =

Dr.Y K Lee
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The overdamped response

Juswaoe|dsiq
uispiacerient (imm)

o
N

| |
©O O o O
2N ON

[ 1.)60 20.3, VO:O

1 2:x,=0.0,v,=1
D 3:x,=-0.3,v,=0

2 e

Time,t  (sec)

Dr.Y K Lee
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Under-damping

3) <1, called underdamped motion - most common

Two complex roots as conjugate pairs
write roots in complex form as:

/11,2 = _gwn T a)n-] \/1_ é%
where j=+/-1

Dr.Y K Lee
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Underdamping

X(t) — e—gwnt (alejwntﬁ + aze_jwnt\/?)

= Ae "' sin(w,t + @)

w, = w ~/1- ¢, damped natural frequency

A=t [+ Cox )+ ()
a)d

¢= tan{ %% j
VO + é,a)nxo

http://acoustics.me.uic.edu/Simulation/SDOF%20Damped.htm

35
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Underdamped-oscillation

* Gives an oscillating
response with
exponential decay

1.0 * Most natural systems
oof — vibrate with and
L0 fime.t " underdamped response

} « See textbook for details
and other
representations

Juswaoe|dsiq

36 Dr.Y K Lee
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Example 4 consider the spring in Ex.3, if c = 0.11 kg/s,

determine the damping ratio of the spring-bolt system.

m=49.2x 107 kg, k =857.8 N/m

c. =2km =2v49.2x107° x857.8
=12.993 kqg/s

c  0.11kg/s
¢ 12.993 kg/s

cr

= ~0.0085 =

the motion Is underdamped
and the bolt will oscillate

37
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Example 5

The human leg has a measured natural frequency of around
20 Hz (Ref: Fig. 9.2) when in its rigid (knee locked) position, in
the longitudinal direction (i.e., along the length of the bone)

with a damping ratio of { = 0.224.

Calculate the response of the tip if the leg bone to
Vp= 0.6 m/s and x,=0

This correspond to the vibration induced while landing on your
feet, with your knees locked from a height of 18 mm) and plot
the response. What is the maximum acceleration
experienced by the leg assuming no damping?

Dr.Y K Lee
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Solution:

V,=0.6, X,=0, { = 0.224

_ 20cycles 2z rad

} =125.66 rad/s
1 s cycles

Q

0, =125.66y1— (.224) =122.467 rad/s

(0-6+(0.224)(125.66) 0)) + (0)(122.467)’
4= 122.467

= 0.005m

A=t
o

=0

\/(Vo +§a)nxo)2 + (xoa)d)2
. b= tan'l( (O)(a)d) ]

¢ = tan 1[ %%

v, + 4w, X,

|

39

VO + é/a)n(o) -
= x(£)= 0.005¢ % 5in(122.467¢)

Dr.Y K Lee
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Use undamped formula to get max acceleration:

2
A =\/x§ +£"—0 ‘w =125.66,v,=0.6,x,=0
a)}’l
A:ﬁm :%
(0 (0

= (0.6)(125.66 m/s? )= 75.396 m/s’

_ _wj(@]
a)n

75.396 m/s’
9.81 m/s°

maximum acceleration =

g=17.68Q"'Ss

40
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Plot of the response:

Displacement

x(t) = 0.005¢**** sin(122.467¢)

- N w ESN a1
1 1 1 1 J

(@)

S, B UGV ORI
| I I E—

T Time, t

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Dr.Y K Lee
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sin(x+ y) =sin xcos y —cosxsin y =
x(t) = Ae ™" sin(w, t + @) = e " (A4, Sinw,t + A, COSw 1)
x(0) = x, = ” (4, sin(0) + 4, cos(0)) = 4, = x,

X=—Cw e " (4,sinw,t+ A,coSw,t)
+w,e " (4,cosw,t— A,sinw,t)
vy =—¢w, (A4,SIN0+x,c0s0) +w, (A4, cos0—x,sin0)

Vo +LW X
:>A1:O é/nO:>
oy

Example o) Compute the form of the response of an
underdamped system using the Cartesian form

cot| Vo +C,x, .
x(t)=e 5”"’( : aé; D sinw,t + x, coswdt]
d

Eq. 2.72

Dr.Y K Lee
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MODELING AND ENERGY
METHODS

An alternative way to determine the
equation of motion and an alternative way
to calculate the natural frequency

43 Dr.Y K Lee
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Modelling

« Newton’s Laws

Zin = mx

> My =10

Dr.Y K Lee
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Energy Methods

dex = jm)'c'dx =

Potential Energy
— 1 2

workdone= U,-U, =—mx*| = T,-T,
Kinetic Energy
= 1 +U = constant

or i(T+U):O
dt

Alternate method of getting the eq. of motion

Dr.Y K Lee
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Rayleigh’'s Method

* It U=T1+ U,

* Let ¢, be the time at which m moves through
its static equilibrium position, then

» U,=0, reference point

» Letz, be the time at which m undergoes its

max displacement (v=0 so 7,=0), U, is max
(7T, must be max ),

* Thus U o= T

MaxX

Ref: Section 2.5

46 Dr. Y K Lee
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Example 7

Compute the natural frequency
& of this simplified model of a
car hitting a bump. Assume it
IS a conservative system.

> J
X )|
1 1 .,
Trotational — E‘je and T Translational — = 114X

J =mass moment of inertia (rotational mass, rotational inertia,
angular mass) =m r?
47
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Solution continued

.2
x:r9:>x:r9:>TRot=%Jx—

The max valueof 7 happensat v . =X,

=T 1 (a)A) —m(a)A) _1( izj 2 42
2 r 2

The max valueof U happensat x..., = 4

= U =Lt
2
Thus 7, ., =U . =
1 m+i2 a)jAzzlkAzza)nz k
2 r 2 J
m+72
r

N

Effective mass
(Total effective mass)

Dr.Y K Lee
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Example 8: Pendulum

O

Jo=mL 2

Dr.Y K Lee
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Now write down the energy

T=£J0¢9.2 zimﬁzéz
2 2
U =mgl(1—cos@), the changein elevation
IS /(1—cosB)
d(1

%(T+U) :E(Emfzéz +mg€(1—0039)j =0

Dr.Y K Lee
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m0?00 + mg/(sin 6)0 =0
= H(mézé’ +mg/(sIn 6’)): 0
— ml%0 +mgl(sin@) =0

= (9(1) +§sin A(t) =0 forsmall 6, sin 6~ 0

14

:é(z)+%e(z) -0 =0, = %

51 Dr.Y K Lee
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Example O The effect of including the mass of the
spring on the value of the frequency.

Ex. 2.8

Dr.Y K Lee
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Solution to Ex 9

mass of

> assumptions

velocity of elementdy :v,, = %)'c(t),

sprzng - _J‘

[— x} dy (adds up the KE of each differential element)

R CE e S RO
Umax _lkAz
2
k Provides some simple
— =0, = - :
Umax_Tmax n m. de_S|gn and modeling
mE guides

Effect of the spring mass = add 1/3 of its mass to the

Ex 2.8 main mass
53 Dr.Y K Lee
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What about gravity?

kA mg — kA =0, from FBD,

T and static equilibrium
m
k | v
— 0 l +x(7)
1
m TA e Uspring — Ek(A_I_x)2
+x(7) U,y = —MgX
Tzimf
2

54 Dr.Y K Lee
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Now use%(TJrU) =0

d|1l 1
— +—k(A+
dt[zmx mgx 5 (A+x) }

= mxx—mgx +k(A+x)x
= x(mx+kx)+x( kA—mg )=0

g -
0 from static equ.

= mx+kx=0

Dr.Y K Lee
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Do It again using Newton’s law

T k(A+x)

~ Iy
v )
mg

From FBD of mass:
mx =mg — k(A +x) =—kx+ (mg — kA)

0 from static
equilibrium

= mx+kx=0

56

Dr.Y K Lee



MECHS375

Y

Example Compound Pendulum

G isthecenterofmass —— \

r 1S the distance OG

C is the center of percussion

Defined as the distance g, =— | %Length of equivalent
mr simple pendulum

where a simple pendulum of the same mass

would have the same period (7) as this pendulum
The radius of gyration kj is the radius of a ring that would
have the same angular inertia ko = Jqor
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ZMO = JO(t) = —mgrsin 6(¢)
— JO(t) +mgrsin(¢) =0

mgr
J

= 0(t) +—=-sin6() =0

mgr

sind~0=0(1)+—=—0(t)=0

J
I
J 49

center of percussion = the point on a rigid body, suspended so as to be able to
move freely about a fixed axis, at which the body may be struck without changing
the position of the axis

No matter whether the body is pivoted from O or C, its natural frequency is the
same. The point C is called the center of percussion.

Dr.Y K Lee
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Center of Percussion in ASTM Standard
for quality control

The method used by manufacturers and governing
associations to determine the moment-of-inertia of a baseball
or softball bat is to measure the period of oscillation when the
bat is allowed to swing as a pendulum from a pivot point 6-

iInches from the knob end of the bat, and then calculate the
moment-of-inertia

ASTM F 1881-04: Standard Test Method for Measuring Baseball Bat
Performance Factor, and ASTM F 1890-04: Standard Test Method for
Measuring Softball Performance Factor, Annual Book of ASTM Standards, Vol.
15.07 (ASTM International, West Conshohocken, PA, 2004). ASTM F 2398:

Test Method for Measuring Moment of Inertia and Center of Percussion of a
Baseball or Softball Bat

ASTM= American Society for Testing and Materials International

www.astm.org

Dr.Y K Lee
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More on springs and stiffness

Longitudinal motion
A 1S the cross sectional area

(m2)
[ ,_E4 e F 1S the elastic modulus
S (Pa=N/m?)
f - e [isthe length (m)

k 1s the stiffness (N/m)
x()

60 Dr.Y K Lee
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Torsional Stiffness

L ]
J, I — GJ2 . .]p is.the polar moment of
/ inertia of the rod
S 0 e Jis the mass moment of
/ inertia of the disk
J 6(t) e G is the shear modulus, /
Is the length

J :J’rsz J = [rdm
p

Polar moment of inertia (Jp) is a measure of an object's ability to resist torsion (solid
mechics). The polar moment of inertia must not be confused with the moment of
inertia (J), which characterizes an object's angular acceleration due to a torque
(dynamics).

Sec. 2.3

61 Dr Vv I 1
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Exam ple compute the frequency of a shaft/mass

system {J = 0.5 kg m?}

> M=J0=JO(t)+k6(t)=0

:>é(t)+£9(t)20

\/7 7Z'd4
=, =
€J

For a 2 m steel shaft, diameter of 0.5cm =

|6, (810" N/m*)[(0.5x10°m)* /32]
N (2 m)(0.5kg - m?)
= 2.2 rad/s

Dr.Y K Lee
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Helical Spring

d = diameter of wire
2R= diameter of turns

r@@ ,p 1= number of turns
x= end deflection
— G= shear modulus of spring
material

B Gd*
 64nR°

63 Dr.Y K Lee
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Transverse beam stiffness

 Strength of materials and
experiments yield:

64 Dr. Y K Lee
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Samples of Vibrating Systems

Deflection of continuum (beams, plates,
bars, etc) such as airplane wings, truck
chassis, disc drives, circuit boards...

Shaft rotation
Rolling ships
See text for more examples.

Dr.Y K Lee
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Example : effect of fuel on
frequency of an airplane wing

P * Model wing as transverse

ﬁ[l beam
L_)/<: * Model fuel as tip mass

: R * Ignore the mass of the wing

= and see how the frequency
of the system changes as

E, | m
I . T the fuel is used up

66 Dr.Y K Lee
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Mass of pod 10 kg empty 1000 kg full
I1=5.2x10°"m4, E =6.9x10° N/m, /=2 m

67

* Hence the
natural ) :‘/@:‘/3(6_9“09)(52“0_5)
frequency Y me® 1000 - 22
=11.6rad/s=1.8 Hz

changes by an

order of o :‘/@ :J3(6.9x109)(5.2><105)
| e 10-2°

magthde =115rad/s =18.5 Hz

while it empties

out fuel.

Pod= a streamlined external housing that enclose engines or fuel

Dr.Y K Lee
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Static Deflection

o, =distance spring Is stretched or
compressed under the force of
gravity by attaching a mass m to it.

A=5=5 =&
k

Many symbols in use including X, and X,

68
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Combining Springs

e Equivalent Spring

series: k,, % %

parallel: &k, =k +k,

Dr.Y K Lee
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Use these to design from
available parts

Discrete springs available in standard
values

Dynamic requirements require specific
frequencies

Mass is often fixed or + small amount
Use spring combinations to adjust w,
Check static deflection

Dr.Y K Lee
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Example Design of a spring mass system
using available springs: series vs parallel

« Letm =10Kkg

« Compare a series and parallel
K K, L
1 combination

m e a) k;, =1000 N/m, &, = 3000 N/m,
Z k3 k3 — k4 =0

K« b)k,;=1000 N/m, k, = 3000 N/m,

ky = k, =0

71 Dr.Y K Lee



MECHS375

Case a) parallel connection :
ky =k, =0,k,, =k, +k, =1000 + 3000 = 4000 N/m

,k ,4
— @ arallel — — = O;'O = 20 ra.d/S
d m 10

Case b) series connection :

ok -0 - L 3000
Y Uk W) 341

’k ,
— a)series — = = 7_50 — 866 rad/S
m 10

Same physical components, very different frequency
Allows some design flexibility in using off-the-shelf components

=750 N/m

72 Dr.Y K Lee
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Free Vibration with Coulomb Damping

1 Coulomb’s law of dry friction states that, when
two bodies are in contact, the force required to
produce sliding is proportional to the normal
force acting in the plane of contact. Thus, the
friction force F is given by:

F =uN = uW = umg (2.106)
where N is normal force,
u is the coefficient of sliding or kinetic friction
wis usu 0.1 for lubricated metal, 0.3 for nonlubricated
metal on metal, 1.0 for rubber on metal

J Coulomb damping is sometimes called constant
damping Sec 2.7
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Free Vibration with Coulomb Damping

« Equation of Motion:

Consider a single degree of freedom system with
dry friction as shown in Fig.(a) below.

W W
= +x
§ fm\k " kx h‘A—d]:—
.. Wﬂ% ﬂ]\]-‘E"::I-1 T ;N

c)

N
(e) (b}

o]

Since friction force varies with the direction of
velocity, we need to consider two cases as
indicated in Fig.(b) and (c).

74 Dr. Y K Lee



MECHS375

75

Free Vibration with Coulomb Damping

Case 1. When x is positive and dx/dt is positive or
when x is negative and dx/dt is positive (i.e., for
the half cycle during which the mass moves from
left to right) the equation of motion can be
obtained using Newton’s second law (Fig. b):

mi=—kx—uN or mx+kx=—uN (2.107)

Hence,
x(t)=A,cosm t+ A,SINw,t —% (2.108)

where w,, = Vk/m is the frequency of vibration
A, & A, are constants
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Free Vibration with Coulomb Damping

Case 2. When x Is positive and dx/dt is negative or
when x is negative and dx/dt is negative (i.e., for
the half cycle during which the mass moves from
right to left) the equation of motion can be derived
from Fig. (c):

—kx+ uN =mx or mx+kx=uN (2.109)
The solution of the equation is given by:
x(t) = A,cosm t+ A, SIn w t+ % (2.110)

where A; & A, are constants
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Free Vibration with Coulomb Damping

x(t) = (x,—uN/lk)cosm,t+uN k| x(t)=—(x,— uNIlk)w, sinw t

Fig. 2.34 Motion of the mass with Coulomb damping

x(t) = (x, —3uN 1 k)cosw t — uN 1 k| X(1) =—@,(x, =3uNlk)sinw,t
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Free Vibration with Coulomb Damping

 Solution:
Eqgs.(2.107) & (2.109) can be expressed as a

single equation using N = mg:
mx + umg sgn(x) +kx =0 (2.111)

where sgn(y) is called the signum function, whose
value is defined as 1 fory >0, -1 fory< 0, and O
fory = 0.

Assuming initial conditions as
x(t =0) = x,

x(t=0)=0 (2.112)
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Free Vibration with Coulomb Damping

The solution is valid for half the cycle only, i.e., for
0 =<t=m/w,. Hence, the solution becomes the
initial conditions for the next half cycle. The
procedure continued until the motion stops, i.e.,
when x,, < yN/k. Thus the number of half cycles
() that elapse before the motion ceases is:

o 2HN _ uN Ay =xy—puN Ik, 4, =0
’ kK k x()=(x,—uN/lk)coswm t+ uN Ik
( ,LIN\ x(t)=—(x,—uNIlk)o, sinw t
Xqg—
That is,r >/ k{ (2.115)_A1:_xo +3uN Ik, 4, =0
2 UN
— x(t=rnlw,)=(x,—uNlk)cosz + uNlk=—(x, —2uN k)

. k) x(t) = (x, —3uN/lk)cosw,t — uN l k

mw, <t <2m/w,
Dr. YK Lee
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Free Vibration with Coulomb Damping

Note the following characteristics of a system with
Coulomb damping:

1.

The equation of motion is nonlinear with Coulomb
damping, while it is linear with viscous damping

. The natural frequency of the system is unaltered with the

addition of Coulomb damping, while it is reduced with the
addition of viscous damping.

. The motion is periodic with Coulomb damping, while it

can be nonperiodic in a viscously damped (overdamped)
system.

. The system comes to rest after some time with Coulomb

damping, whereas the motion theoretically continues
forever (perhaps with an infinitesimally small amplitude)
with viscous damping.
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Free Vibration with Coulomb Damping

Note the following characteristics of a system with
Coulomb damping:

5. The amplitude reduces linearly with Coulomb damping,
whereas it reduces exponentially with viscous damping.

6. In each successive cycle, the amplitude of motion is
reduced by the amount 4uN/k, so the amplitudes at the
end of any two consecutive cycles are related:

X =X —47”N (2.116)

As amplitude is reduced by an amount 4uN/k in one
cycle, the slope of the enveloping straight lines (shown
dotted) in Fig 2.34.
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Free Vibration with Coulomb Damping

 Torsional Systems with Coulomb Damping:

The equation governing the angular oscillations of
the system is

J,0+kO=-T (2.117)
and J,O0+kO=T (2.118)

The frequency of vibration is given by

w = |—- (2.119)
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Free Vibration with Coulomb Damping

and the amplitude of motion at the end of the r-th
half cycle (0,) is given by:
2T

0, =0y —r"~ (2.120)

t

The motion ceases when

r > o (2.121)
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Free Vibration with Hysteretic Damping

Consider the spring-viscous damper arrangement
shown in the figure below. The force needed to

cause a displacement: {
F=k+cx (2.122) T

For a harmonic motion T

of frequency w and r—i

amplitude X, x(0) F)

x(1)=Xsineot (2.123) °
F(t) = kX sin wt + cXw CoS wt
=kxica)\/X2—(Xsina)t)2
=kt caon X7 —x° (2.124)
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Free Vibration with Hysteretic Damping

When F versus x is plotted, Eq.(2.124) represents a
closed loop, as shown in Fig(b). The area of the loop

denotes the energy dissipated by the damper in a cycle of
motion and is given by:

AW = §>Fdx = jzm(kX sin ot + cXw cos ot | wX cos ot )dt

0

= X’ (2.125)
Sror Hence, the damping
Hpseress | Losding . coefficient:
loop h
E s i (2.126)
» Strain a)
(isplacenent where h is called the hysteresis
— n damping constant.
@) w | Experiments shows that the energy loss due to
Fig.2.36 Hysteresis loop internal friction is independent of operating o
85 "
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Free Vibration with Hysteretic Damping
Eqgs.(2.125) and (2.1206) gives
AW = mhX? (2.127)

Complex Stiffness.
For general harmonic motion, x = Xe'®, the force is given

by
F =kXe'” +cowiXe'™ = (k+iwc)x  (2.128)

Thus, the force-displacement relation:

F = (k +ih)x (2.129)

where  k+ih= k(1+ z%j =k(+ip) (2.130)
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Free Vibration with Hysteretic Damping

Response of the system.
The energy loss per cycle can be expressed as

AW = 7k BX? (2.131)

The hysteresis logarithmic decrement can be
defined as ¥
5=|n£Xj len(1+7z,6’)zﬂ,3 (2.135)

j+l

()
Corresponding frequency |

m

Response of a hysteretically damped system
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Free Vibration with Hysteretic Damping

The equivalent viscous damping ratio

o~ 27¢,, zﬂﬂ:%h
- :E:i (2.137)
And thus the equivalent damping constant is

C =, Lo =2M§:ﬂmzﬁ:ﬁ (2.138)

w @
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Example 2.16 Response of a Hysteretically
Damped Bridge Structure

A bridge structure is modeled as a single degree of

freedom system with an equivalent mass of 5 X 10° kg and
an equivalent stiffness of 25 X10° N/m. During a free
vibration test, the ratio of successive amplitudes was found
to be 1.04. Estimate the structural damping constant ([3)
and the approximate free vibration response of the bridge.

500
400
300
200
loo
¢
-100
=200
-0
—400
—500

-0 -8 -6 -4 -2 0 2 4 & E

. Fomee (N)

7/

7

(e)

1o

£
Deflecton (mm)

500
400
300
200
loo

e

-100
=200
=300
=400
—-500

| Force (N)

7

A

. G
'

i

-0 -8 -6 -4 -2 0 2 4 & E 10

(b)

'.
Deflecton (mm)
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Example 2.16  Solution

Using the ratio of successive amplitudes,
Eq.(2.139) yields the hysteresis logarithmic
decrement as

5 =In 4 =In(1.04) = In(1 +
=In & (709 = 7p)

j+l

1+ 7 =1.04 or L= 0.04 =0.0127

T

The equivalent viscous damping coefficient is

ﬁk:ﬂi = pkm (E.1)

C =
eq a)
Vm
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Example 2.16  Solution

Using the known values of the equivalent stiffness
and equivalent mass,

¢, = (0.0127)/(25x10°)(5x10°) = 44.9013x10° N -s/m

Since ¢, < C., the bridge is underdamped.
Hence, its free vibration response is

-

Xy + 60, X,

J1-CCo,
40.9013x10°

C
_ e _ —0.0063
where ¢ =" =300 0678 107

c

siny1-¢%w t

4

x(t) =e " {x,c08\1-CCw t+
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2.6.4 Energy dissipated in Viscous Damping:

In a viscously damped system, the rate of change
of energy with time is given by:

2
—— =force x velocity = Fv=—cv* = —c(@j (2.93)
dt dt

The energy dissipated in a complete cycle is:

dx
dt

=mcw, X’ (2.94)

27lw,)

AW = c(

t=0

jd J‘z”cha)d cos’ w,t-d(w,t)

92 Dr.Y K Lee



MECHS375

93

Energy dissipation

Consider the system shown in the figure below.
The total force resisting the motion is: 4
F=—kx—cv=—kx—cx (2.95)

If we assume simple harmonic motion:
x(t)=Xsinw,t (2.96)

Thus, Eq.(2.95) becomes !
F=—kXsinw,t—cw,X COSw,t (2.97)

The energy dissipated in a complete cycle will be
27l o,

AW = Fvdt

J1=0

27w .
-[" "kX?w,sinw,t-cosm,t-d(w,t)
of:

27l oy,

+ cw,X’cos’ w,t-d(w,t)=mw,X* (2.98)
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Energy dissipation and Loss Coefficient

Computing the fraction of the total energy of the
vibrating system that is dissipated in each cycle of
motion, Specific Damping Capacity

2
AW, _ mo, X 2( 2”)( < j: 20 =4rx{ =constant  (2.99)

w %mijz @, \ 2m

where W is either the max potential energy or the max
Kinetic energy.

The loss coefficient, defined as the ratio of the
energy dissipated per radian and the total strain

energy: ((AWI27) AW
loss coefficient = _ ="
w 27W

(2.100)
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PRESSURE
EXCHANGE WITH
LUNG VOLUME HEAD

% fy - 30 Hz
TRACHEA—"¢, =

7
/:/ SPINAL COLUMN f, - 8 Hz

? | 1§ LUNG CRITICAL FOR INJURY
VOLUME
_\r"\«'_-"\il“'W'_

A - UNDER +G, LOAD.
Al
CHESTWALL/ 3
AP NN\

=
g ’
STIFF DIAPHRAGM
( ) / % L
ABDOMINAL MASS //

fo-4-8 Hz

NN
™

L i FERIODIC F':Z'FI'DE“'> APFLIED TO
IMPACT ] SITTING SUBJECTS

PERIODIC FORCE "':_ APPLIED TO
IMPACT J STANDING

SUBJECTS

FIGURE 42.5 Lumped parameter biodynamic model of the standing and sitting human body
for calculating motion of body parts and some physiological and subjective responses to verti-

cal vibration. The approximate resonance frequencies of various subsystems are indicated by f..
(von Gierke.®)
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