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Engineering Mechanics – Dynamics & Vibrations

Engineering Mechanics 
Dynamics and Vibrations

Plane Motion of a Rigid Body: Equations of Motion

x x y y GF ma F ma M J    

• Motion of a rigid body in plane motion is 
completely defined by the resultant and moment 
resultant about the mass centre G of the external 
forces.
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D'Alembert's principle: inertia forces

• The particle acceleration we measure from a 
fixed set of axes X-Y-Z (Figure (a)) is its 
absolute acceleration a. In this case the 
familiar relation                     applies F ma

• When we observe the particle from a moving 
system x-y-z attached to the particle, the 
particle necessarily appears to be at rest or in 
equilibrium. A fictitious force -ma  (so called 
inertia force) acts on the particle (figure b)
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• D'Alembert showed that one can transform an 
accelerating rigid body into an equivalent static 
system by adding the so-called “inertia forces”

- The translational inertia must act through the 
center of mass and the rotational inertia can act 
anywhere. The system can then be analyzed 
exactly as a static system.

- The inertia forces are seen to oppose the motion

D'Alembert's principle: inertia forces

Engineering Mechanics – Dynamics & Vibrations
Plane Motion of a Rigid Body: D'Alembert's principle

Spring-Mass System
Engineering Mechanics – Dynamics & Vibrations

D’Alembert’s principle
0xF 
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Newton’s second law
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Spring-Mass System: Gravity Effect  
• At static equilibrium configuration

stk mg 

• Now the particle is displaced through a distance xo  
from its static equilibrium configuration and released 
with a velocity vo, the particle will undergo simple 
harmonic motion
From the free body diagram of the mass m at a time 
instant t with displacement x(t)
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 Governing equation of motion
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Free Vibrations of Spring-Mass System  

   tCtCx nn  cossin 21  2@  t=0; x=x   o otime C x

1@  t=0; v=x=v  
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• x is a periodic function and wn is the natural circular frequency of motion.

• C1 and C2 are determined by the initial conditions:

1 2( ) sin cosn nx t C t C t  
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General Solution
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Simple Harmonic Motion
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• Displacement is equivalent to the x component of the sum of two vectors
which rotate with constant angular velocity 

21 CC



.n

1

2

o

n

o

vC

C x






Engineering Mechanics – Dynamics & Vibrations

0( ) sin cosn o n
n

vx t t x t  


   txx nm sin

• Velocity-time and acceleration-time curves can be 
represented by sine curves of the same period as the 
displacement-time curve but different phase angles.
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Simple Harmonic Motion
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Sample Problem 1

A 50-kg block moves between vertical 
guides as shown.  The block is pulled 
40mm down from its equilibrium 
position and released.

For each spring arrangement, determine 
a)  the period of the vibration, b) the 
maximum velocity of the block, and c) 
the maximum acceleration of the block.

SOLUTION:

• For each spring arrangement, determine 
the spring constant for a single 
equivalent spring.

• Apply the D’Alembert’s principle for 
the harmonic motion of a spring-mass 
system.

Engineering Mechanics – Dynamics & Vibrations
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Sample Problem 1

 cosv x x tm n n    

 2 sinm n na x x t     

1 2 0mx k x k x  

For equilibrium:  0vF 

Force diagram

1 2( ) 0mx k k x  

0eqmx k x 
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Sample Problem 1
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 cosv x x tm n n    

 2 sinm n na x x t     

0eqmx k x 

For equilibrium:  0vF 

2 1 1 1

2
1

1 2

1 2

1 2

1 2

( )

1 1 1

eq

eq

P k x k x x k x
k xx

k k
k kP x

k k

k k k

   







 

Engineering Mechanics – Dynamics & Vibrations

Distributed Mass: Rotational Inertia
J = Mass moment of Inertia about C.G

2J r dm 

dx

x
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m mass unit length
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Displacement diagram

CGJ 

Force diagram
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12CG
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Force diagram
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Distributed Mass: Rotational Inertia
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3A
MLJ 

Sample Problem 2
For the system shown, m=0.4-kg, 
K1=2N/mm and K2=3N/mm. 
Taking the rod on which the mass 
is fixed as light and stiff.

Determine a) Natural frequency 
of the system, b) the period of the 
vibration.

k1

k2

m
l l l

Engineering Mechanics – Dynamics & Vibrations

SOLUTION:

• Select a degree of freedom 
(small displacement).

• Represent deformations of 
springs (for elastic forces) and 
masses (for inertia forces) in 
terms of x(t)
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Displacement
1
3 st

2
3 st
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Static Forces mg
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• At static equilibrium configuration
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9 9
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A

Sample Problem 2

Static equilibrium

Gravity Effect

Engineering Mechanics – Dynamics & Vibrations

forces

For equilibrium: 0AM 

A
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 Equation of Motion

Sample Problem 2
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Sample Problem 2

static equilibrium configuration
displacement

( )x t2 ( )
3

x t1 ( )
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For equilibrium: 0AM 
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Equation of motion
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 0.100 secn 

62.36 rad/sec

No Gravity Effect
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If distributed mass of the bar is considered

For equilibrium: 0AM 

2
ML 

2

12
ML 

( )mx t 2
2 ( )
3

k x t 1
1 ( )
3

k x t

forces
A l l l

 
2

1 2
1 2( ) ( ) 2 ( ) 3 0
3 3 3

( )
3

MLk x t l k x t l mx t l

x t
l





            







1 2
1 4( ) ( ) 0

3 9 9
Mm x t k k x t            



Sample Problem 2
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one can also use principle 
of virtual work to obtain 
the equation of motion

3L l
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Sample Problem 3

Derive the equation of motion of a rectangular block resting on a frictionless 
surface as shown for small oscillations in a horizontal plane . Solve the 
equation of motion by simplifying it for M=10Kg, a=0.1m, b=0.05m, 
k=10KN/m
Determine a)Natural frequency of the system, b) the period of the vibration.

SOLUTION:

• Select a degree of freedom (small 
displacement).

• Represent deformations of springs (for 
elastic forces) and masses (for inertia 
forces) in terms of θ

k

a=0.1m

b=0.05mM=10kg

Engineering Mechanics – Dynamics & Vibrations

0 0M 
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m a b kb 
 

  
 



For equilibrium: 

Sample Problem 3
bθ

θ
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0.0416 25 0  

Equation of motion
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 0.256 secn 

24.514 rad/sec

Sample Problem 3
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3m 3m

What are the differential equation of motion about the static equilibrium
configuration shown and the natural frequency of motion of body A for small
motion of BC? Neglect inertia effects from BC. Assume K1= 15 N/m, K2= 20
N/m, K3= 30 N/m and WA=30N

SOLUTION:

• Select a degree of freedom (small 
displacement).

• Represent deformations of springs (for 
elastic forces) and masses (for inertia 
forces) in terms of x

Sample Problem 4
Engineering Mechanics – Dynamics & Vibrations
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2xD xD

Displacement diagram
Force diagram

0  0v cF and M  

The configuration shown is the static equilibrium and given that rod BC is mass
less (i.e neglect the inertia effect of BC). Here two equilibrium conditions exist i.e

1 2

0 
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A A A A D

F
m x k x k x x



   



Sample Problem 4
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Thus due to inertia less rod BC the 2-dof problem reduces to 1-dof problem 
(since xD depends purely on xA).    
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Sample Problem 4
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Force 
diagram
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Tutorial problem-3

Rod AB is attached to a hinge at A and to two springs, each of constant k. if
h=700 mm, d=300 mm, and m=20 kg, determine the value of k for which the
period of small oscillation is (a) 1sec, (b) infinite. Neglect the mass of the rod
and assume that each spring can act in either tension or compression.

Sample Problem 5
Engineering Mechanics – Dynamics & Vibrations
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(a)

(b)

Sample Problem 5
Engineering Mechanics – Dynamics & Vibrations

By minimum potential energy, We have
21( cos ) 2 ( )

2
V mg h k d      
For equilibrium 

2( sin ) (2 ) 0dV mg h kd
d

 

   

One can also use principle of minimum potential energy to obtain k when T is 
infinite

Sample Problem 5
Engineering Mechanics – Dynamics & Vibrations

θ=00 is a equilibrium configuration
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For stability of Equilibrium:

2
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2

2
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2
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( cos ) 2

    

k >763 
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d V mg h kd
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d V mgh kd
d

mghk
d






  

   



i.e.  θ=00 ,Configuration is stable for k >763N/m ( which is 
same as that of vibrational analysis)
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Sample Problem 5
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Lθ(t)

M,J

M,J
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Sample Problem 6

0AM For equilibrium: 
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Damped Free Vibrations

• With viscous damping due to fluid friction,
:maF   

0


kxxcxm
xmxcxkW st





• Substituting x = elt and dividing through by elt

yields the characteristic equation,

m
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• Define the critical damping coefficient such that

nc
c m

m
kmc

m
k

m
c

220
2
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• All vibrations are damped to some degree by 
forces due to dry friction, fluid friction, or 
internal friction.
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Damped Free Vibrations
• Characteristic equation,

m
k

m
c

m
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2

22
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 nc mc 2 critical damping coefficient

• Heavy damping:  c > cc
tt eCeCx 21 21

  - negative roots 
- nonvibratory motion

• Critical damping:  c = cc

  tnetCCx  21 - double roots 
- nonvibratory motion

• Light damping :  c < cc
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21d n     damped frequency
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c m

 


Define damping ratio

21n ni      

Underdamped System

Critically damped System

Overdamped System
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Damped Vs. Undamped Free Vibrations
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In the figure use:
u=x
u(0)=xo

 ou( o )= v

Damped Undamped

Damped Free Vibrations (logarithmic decrement)
From the two successive peaks
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Engineering Mechanics – Dynamics & Vibrations
Damped Free Vibrations

0 oFor u( o )= v ,i.e noinitial velocity

Sample Problem 
Engineering Mechanics – Dynamics & Vibrations

A  loaded  railroad  car  weighing  30,000  lb  is  rolling  at  a  
constant velocity vo when it couples with a spring and dashpot 
bumper system. The recorded displacement-time curve of the 
loaded railroad car after coupling is as shown. Determine (a) the  
damping constant, (b) the spring constant. 

Source: BJ
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Sample Problem 
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