Dynamics and Vibrations
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Plane Motion of a Rigid Body: Equations of Motion
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Motion of a rigid body in plane motion is
completely defined by the resultant and moment
resultantabout the mass centre G of the external
forces.

Y F=ma, Y F=ma » Mg=Ja

D'Alembert's principle: inertia forces

¢ The particle acceleration we measure from a
fixed set of axes X-Y-Z (Figure () is its
absolute acceleration a. In this case the
familiar relation ZF —ma applies

« When we observe the particle from a moving
system x-y-z attached to the particle, the
particle necessarily appears to be at rest or in
equilibrium. Afictitious force -ma (so called
inertia force) acts on the particle (figure b)
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Plane Motion of a Rigid Body: D'Alembert's principle

D'Alembert's principle: inertia forces

» D'Alembert showed that one can transforman
accelerating rigid body into an equivalent static
system by adding the so-called “inertia forces”

= 0
- The translational inertiamust act through the
center of mass and the rotational inertia can act
anywhere. The system can then be analyzed
e exactly as a static system.
- The inertia forces are seen to oppose the motion
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Spring-Mass System
Small Oscillations . d?x
dt?
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Friction free smooth surface
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Spring-Mass System: Gravity Effect
T e T = & * At static equilibrium configuration
5 ks, =mg
7 T ~» Now the particle is displaced through a distance x,
nstretehed T=ké, . . apap s - -
8, from its static equilibrium configuration and released
. -y _ with a velocity v,, the particle will undergo simple

Equilibrium harmonic mOtion

@ . From the free body diagram of the mass m at a time
3 instantt with displacement x(t)

2F =0
mg —k (S, +X)—mx=0

T=ké,+x) ) ) )
o —\ Governing equation of motion
] | o 1 X+—x=0 where 0’ =—
m m

.....
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Free Vibrations of Spring-Mass System

X(t) =C,sinw,t+C, cos oyt General Solution

* xisa periodic function and w, is the natural circular frequency of motion.

» C, and C, are determined by the initial conditions:

x = Cysin(w,t)+C, cos(wpt) @time t=0; x=x, =C, =X,

. . . v
v =x=Cyw, cos(w,t)-Com, sin(wpt)  @time t=0; v=x=v, = C, =—
,

n

Vy .
X(t) =—Lsinw,t + X, cosw,t
a,

n
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Engineering Mechanics — Dynamics & Vibrations
Simple Harmonic Motion

Vo
C,=—2
@,

CZ Xo

« Displacement is equivalent to the x component of the sum of two vectors C; +C,
which rotate with constant angular velocity .

Xm =/ (Vo /@y )% +x8 = amplitude

Vv, .
X(t) =—2sinw,t + X, cos o, t
¢=tan"* (vym, /%)= Phase angle

a)n
2n .
_ . T, =—= period
X = X Sin(@pt +¢) on
fn= L =N _ atural frequency
T, 27
ginee 0 echna DyNa & pratio

Simple Harmonic Motion

 \elocity-time and acceleration-time curves can be
represented by sine curves of the same period as the
displacement-time curve but different phase angles.

X = Xp sin(@pt +¢)
V=X
= Xy, COS(@nt +¢)
= Xy, Sin(@pt +¢ +7/2)

a=xX
= X2 sin(opt +¢)

= X@Z sin(opt +¢ + 1)
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Sample Problem 1

(a)

SOLUTION:

* For each spring arrangement, determine
the spring constant for a single
equivalent spring.

» Apply the D’ Alembert’s principle for
the harmonic motion of a spring-mass
system.

A 50-kg block moves between vertical
guides as shown. The block is pulled

40mm down from its equilibrium
position and released.

For each spring arrangement, determine

a) the period of the vibration, b) the

maximum velocity of the block, and c) s .
the maximum acceleration of the block.

ginee 0 s 2 DyNa & pratio
Sample Problem 1
k,=4kN/m k,=6kN/m m=50kg
G mx Keg 10
P i o, =,|— = |— =14.14rad/sec
< < m 50
kl% 2r
r x(¢) = (!)_ 7, =0.444s

I : kr kx
R L Force diagram
Static Equilibrium

For equilibrium: > F, =0
mX+k,x+Kk,x=0

mX + (K, +k,)x=0
MX + K., X =0

Keg =k, +K,
=10kN/m =10* N/m

n

V=X=X_o cos(a;t+¢)
mn n

Vim =Xm@n

=(0.040m)(14.14rad/s) vV, =0.566m/s

a=X=-x0sin(ot+¢)

2
am = Xma)n

~(0.040 m)(14.14 rad/s)’
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Sample Problem 1
ki =4kN/m k; =6kN/m For equilibrium: }"F, =0

- mMX + KX =0
J’)‘—1 X1
3 m I

% I 2400N/m

<, 20kg =6.93rad/s

% k, -_\‘E) k s HH

d
| ) Force d1a am 0.

Static Equilibrium = n= wn 0.907s

P= keqx =k (X=x) =kX

_ kZX
TRk
_ kK
k, +K,
1 1 1
_:_+_
keq I(1 I(2

V=X=X_o cos(co t+¢)
mn n
Vim =Xm@n

=(0.040m)(6.93rad/s)

a=X=-x,0 sin(ot+¢)
a, =X, o
=(0.040 m)(6.93 rad/s)

2

Distributed Mass: Rotational Inertia

v, =0.277m/s

am =1.920m/s?

J = Mass moment of Inertia about C.G

YA

J =r’dm

—5X

—hd

0 ! L/2
L/2
J= [ x*(mdx)

Displacement diagram

-L/2

L2

m = mass/unit length

Jesb
2. B L S (1 T ¥ [
A \ 12 12 12
/! . mL2 .
- Jee=——-6
Force diagram 12
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Distributed Mass: Rotational Inertia

L |
1
Y s = Sy ce
| , | mL =M _
Displacement diagram Pure Translation Pure Rotation
o ML -
Inertia Forces at C.G = My =—-0 l + JCGQD
M Al
12 "4,
.. &
3,0 «t’ 2
- :\A Inertia Forces at C.G J = ML
\ AT
) . Moment at ‘A’ due to inertia forces 3
<~ Force diagram ML -~ ML LY ML
3,0= é'+—é'(f): i
12 2 2 3
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Sample Problem 2
e For the system shown, m=0.4-kg,
kl§ K;=2N/mm and K,=3N/mm.
q> ‘ . . M Takingthe rod on which the mass
' . is fixed as lightand stiff.

Determine a) Natural frequency
of the system, b) the period of the
vibration.

SOLUTION:

* Select a degree of freedom
(small displacement).

 Represent deformations of
springs (for elastic forces) and
masses (for inertia forces) in
terms of x(t)
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Sample Problem 2
Gravity Effect > 3 @
§j> ] - Displacement S <5
o 7551 ------- 1 7551
3 A AN Static equilibrium
%
3
A [ * At static equilibrium configuration
\ | >M,=0
20,
k2 st
1) 45
. k Dty 2Ot
Static Forces mo 19 feTg —MY

Engineering Mechanics — Dynamics & Vibrations

Sample Problem 2 T _
ix(t) - §1> 1 ‘ 1 [ ®-
1x(t) 3 e
f (2 2 ]
k1 Zxm)-%
_______ T Jgg 1 2| 3 X035 |
3 T -y 7 | | |
Displacement | 1
1 5, e
For equilibrium: >’ M, =0 k{gx(t)*?‘] mx(t),
" (%x(t)—%)l K, (%x(t) —%@,le —mX@)@31)-mg(3) =0 forces Mg

1 5,1 2 2.2
_kl(gx(t)_?')g—kz (5 X(t)—gésth—mX(t)—mg :0

)+ g 2 K e )5 g |-
{mx(t)+(9+ 9 Jx(t)}{(ng 9 jés, mg} 0

{mx(t) + (% +%k2j x(t)} =0 — > Equation of Motion
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Sample Problem 2
2 X(t)
L0 30 No Gravity Effect
\ di > 7 ! ®-
\ isplacement ! 5
static equilibrium configuration )
| | Equation of motion
§> forces
Ao | M(t) + kg X() =0
1 2 )
[k]=x®)  [k]=x() mx(t) 14
: 3 . [2 3"4} N/mm= = x10°N/m
For equilibrium: >’ M, =0 9 9 9
1 2 .
[kléx(t)}l+{k2§x(t)}2l+[mx(t)]3l:O \/T {1400 _ (523 o]
1,1,2

mX‘(t){Sk 3+3k }x(t) 0

wn

ginee 0 e 3 ) 3 &8 pratio
Sample Problem 2
If distributed mass of the bar is considered

ML . ML . §]> o~

\ | 742 Lo
q>A I 1 |f?’ll : # forces

[kl]%x(t) [kz]gx(t) mx(t)

For equilibrium: > M, =0

2
[ —x(t)} [kzéx(t)}Zl+[m5((t)]3l+%65:0 L=3l
b= x(t)
- k,=+K, one can also use principle
(m ! Jx(t) J{ ‘9 9" } x()=0 of virtual work to obtain

the equation of motion
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Sample Problem 3

SOLUTION:

« Select a degree of freedom (small
displacement).

 Represent deformations of springs (for
elastic forces) and masses (for inertia
forces) in terms of 6

Derive the equation of motion of a rectangular block resting on a frictionless
surface as shown for small oscillations in a horizontal plane . Solve the
equation of motion by simplifying it for M=10Kg, a=0.1m, b=0.05m,
k=10KN/m

Determine a)Natural frequency of the system, b) the period of the vibration.
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Sample Problem 3

kb6

Forces

Displacements

For equilibrium: >, M, =0 y =mass/unitarea

2 2
Mé+yabi(ijé+yab2(2j5+kb9(b):0 yab=M
12 2\2 212
2 2
M@ +b) 5
12

2 2
a5em i ikr0-0
4 4

2 K2 Nl
{@}mkbze):o s
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Sample Problem 3

Equation of motion

0.04166 + 250 =0

W = /Lz /iz 24.514 rad/sec
" m 0.0416
2

i 7, =0.256 sec

n
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Sample Problem 4

i SOLUTION:
.gkl
‘ * Select a degree of freedom (small
E displacement).
%I@ ¢ * Represent deformations of springs (for

elastic forces) and masses (for inertia
forces) in terms of x

D

3m i
1

3m

i
I
I
]
I
]
I
I
|

B.r
3
I

What are the differential equation of motion about the static equilibrium
configuration shown and the natural frequency of motion of body A for small
motion of BC? Neglect inertia effects from BC. Assume K;= 15 N/m, K,= 20
N/m, K5= 30 N/m and W,=30N

12/5/2013

11



Sample Problem 4
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Displacement diagram

ks(2xp)

kaxa

l

A i
D T

Kz (xa-xo)

1 -

Force diagram

The configuration shown is the static equilibrium and given that rod BC is mass
less (i.e neglect the inertia effect of BC). Here two equilibrium conditions existi.e

>F,=0and }M_ =0

2R =0

MuX, + kle + kZ(XA - XD) =0 1)
ginee 0 s 2 DyNa & pratio
Sample Problem 4
kaxa
S M, =0 L
—12K,X,, + 3k, (X, —X;) =0 (2) | s
K2 (xa -xp)
T .
[k . -
From (2), XD_{k2+4k3ij 3)

Ka(2x0) Force
diagram

Thus due to inertialess rod BC the 2-dof problem reduces to 1-dof problem

(since xp depends purely on X,).
Substitute (3) in (1)

. 4k
mMyX, +[k1 +k2(k +Zk
2 3

-

o = Ko +aKs(k +k;)
" ma(k, +4k,)

o, =3.242 rad/sec|

12/5/2013
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Sample Problem 5

B

h

e P T

|
B

Rod AB is attached to a hinge at A and to two springs, each of constant k. if
h=700 mm, d=300 mm, and m=20 kg, determine the value of k for which the
period of small oscillation is (a) 1sec, (b) infinite. Neglect the mass of the rod
and assume that each spring can act in either tension or compression.
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Sample Problem 5

Displacements

For equilibrium: ; M, = 0
mhé(h) + 2kd6(d) —mg (h6) = 0

2
G{de —%9:0

mh? h
2
o = 2kd® g
mh? h

12/5/2013
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Sample Problem 5
(@  For 1=1lsec, T= Z_T;' w? = 4m?
2 _2k(03)? _ 981
At =% (0.7) 0.7
k=2912.4 N/m
(b)  For t= infinite, T= i—z, w, =0
) 2k (0.3)° 9.81
wn = 0 = —f — R
20\0.7 0.7
k=763.0N/m
ginee 0 echna yna 8 pratio

Sample Problem 5

One can also use principle of minimum potential energy to obtain k when T is
infinite
o, =0 which means the rod have T,,— « .i.e.

For small disturbance 8, it will never return to original position (6=0)

By minimum potential energy, We have
V =mg(hcose) + ZBk(dG)Z}

For equilibrium
dv

— =—mg(hsing) +kd?(26) =0
0 a( ) (20)

0=0° is a equilibrium configuration Displacements

12/5/2013
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Sample Problem 5

(2O
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- o ] awv
For stability of Equilibrium: ~ —~| >0
dav
=-—mg(hcose) + 2kd*?
107 a( )
% g0 =—Mgh+2kd? >0
K> mgh
2d?

k >763 N/m

i.e. 6=00 Configuration is stable for k >763N/m (' which is

same as that of vibrational analysis)

e n e DVN 3 & pratio
Sample Problem 6
2
j A L_Q(E . " m /= =
1 LALLLN L L0 12
: ; =57 Lo
LO®)
M @200 o

MIL/26(t)]
<236t
k[LO(t)] )
Lo MLE@®] |/ Qm[LG(t)]
Jd |
1 ...
MILR2OOT T . m{Lo(v)]
L2001 E 5

? Forces

70(t)

A Displacements

For equilibrium:2_M , =0

6+

. . ML . . M
mL%0 + mL*0 + ——0 + ML*0 + "
2 2
ML 5 ML G ko -0
12 4

(2mL2 +§ML2jé—kL29:O

12/5/2013
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Damped Free Vibrations

X

:
3
2

» All vibrations are damped to some degree by
forces due to dry friction, fluid friction, or
internal friction.

* With viscous damping due to fluid friction,
S F=ma: W -k(5g+X)-cx=mx
mx+cx+kx=0

T =k(dy +x)

£ » Substitutingx = e and dividing through by et
yields the characteristic equation,

X

2
| miZicatk=0 21--C4 (C) _k
2m 2m m

* Define the critical damping coefficient such that

C.= 2m\/E =2Mmap,

(20
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Damped Free Vibrations

 Characteristic equation,

Define damping ratio

2 c c 2 k 5_ C _ (o
A A+k=0 A=+ || = | =2 = =—"
mA® +cA + o (Zm) - & 2ma
C. =2ma, = critical damping coefficient A=—Co tio, 1_52

 Lightdamping: ¢ <c,

x=e 7™t (C, sinw,t+C,cos myt)

* Critical damping: ¢ =c,

Underdamped System
=e %" (C, sinawyt+C, cos wyt)
@y = 0,\1-E% = damped frequency
- double roots Critically damped System

X = (Cy +Cpt)e ®nt

» Heavy damping: ¢ > c,
X = Cleth +Cze’12t

- nonvibratory motion

- negative roots

- . Overdamped System
- nonvibratory motion

12/5/2013
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Damped Vs. Undamped Free Vibrations
Damped Undamped
x(t) = e |:Xo coswpt + +f:’nxo sin th} X= X,C08 (@, t)+;/)—:sin(a)n t)

2 2
V,

oo Xg{vmﬁiwnxo} p:m
COD wn

Undamped structure

/
/>, i0)

e ” pg'(.:wnt

Damped structure

21/ U=x
T,=2n/®, B
g ey u(0)=x,
e ‘ Tp=2m®p |
e u(o)=v,
0 aYa O a C . a : DIra 0

Damped Free Vibrations (logarithmic decrement)

In the figure use:

From the two successive peaks

X

7 Undamped structure

, Damped structure

— T
0 - eéwﬂ D o ;“
Xn+1 e
Wy = Wy, 1—52 :>TD = Tn - /pg,/éu),,l w&_,,,%};z‘;g:jw
1-¢& e
2 c
Note, T, =% and & =
a)n 2ma)n
27
In n_— éa)nTD — 5
Xn 1- &2

12/5/2013
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Engineering Mechanics — Dynamics & Vibrations
Damped Free Vibrations

Critically damped, { = 1 2 I1

7 Overdamped, { =2

N Underdamped, { = 0.1 '

u(t) / u(Q)

For u(o)=v, =0,ienoinitial velocity

ginee 0 echa yna & pratio
Sample Problem
Vo %
T 0.6 — I ) [ pa—
05k
~ 041
L £ sl 0.5 in.
s
II g 02 0.12in.
; 0.1
B0 T \ T \0/_-1
8 o1l 0.2 0 06 5
09 Time (s)
—osb

A loaded railroad car weighing 30,000 Ib is rolling at a
constant velocity v, when it couples with a spring and dashpot
bumper system. The recorded displacement-time curve of the
loaded railroad car after coupling is as shown. Determine (a) the
damping constant, (b) the spring constant.

12/5/2013
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Engineering Mechanics — Dynamics & Vibrations

Sample Problem 0or | il ,
T, =041s W
el 05i
2 2 _ é N D in.
m,; = LT 15325 rad’s £ .
T, 041 g 02 012 n.
c § 0.1
— T = 0 —
ﬁ: efwnTD — @2Mn P A o1l 02 0 06~
X2 09 Time (s)
03
oTd X
—=In| — P eV
2m Xy @’ =__[_]
) mo N\ 2m
m.ox
¢=—In- I
T, k=may; +—
(2)(15000), 12.5 o
=4 b= = (15000)(15.325)% + 104323 x10 )
' L (4)15000)
=104.423x10° N-s/'m —3.7046 % 10° N/m
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